Successes and Challenges in Satellite Remote Sensing of Trace Gases for Air Quality Applications

Folkert Boersma
Harvard University

Randall Martin

Dalhousie University

Harvard-Smithsonian Center for Astrophysics

Successes

Long-Range Transport of Pollutants

CO from MOPITT for July 2004 Pfister et al., 2006

OMI Tropospheric NO₂ column Eskes et al.

Source Strengths Inferred from MOPITT CO Observations

Adjustments in CO inventories

40°N 30°N 20°N 10°N 10°S 90°E 120°E adjoint inversion 50°N 40°N 30°N 20°N 10°N 10°S 120°E 0.75 1.00 1.25

analytical inversion

Correction factors to *a priori*Asian CO sources for
February – April 2001

Kopacz et al., submitted

Heald et al., 2004

Top-Down Constraints on NOx Emissions

Inverse Modeling

SCIAMACHY Tropospheric NO₂ (10¹⁵ molec cm⁻²)

NO_x emissions (10¹¹ atoms N cm⁻² s⁻¹)

Martin et al., 2006

Reduction in NOx Emissions
During Traffic Restrictions
Observed by OMI

Sino-African Summit in Beijing

Wang et al., 2007

NO₂ Trends Inferred from GOME (1995-2002)

Top-Down Constraints on Isoprene Emissions

Inverse Modeling

Millet et al., submitted

Isoprene dominant source when Ω_{HCHO} is high

Other VOCs give rise to a relatively stable background Ω_{HCHO}

→ Not to variability detectable from space

 Ω_{HCHO} variability over N. America driven by isoprene

Global Retrievals of Tropospheric Ozone

Tropospheric O₃ from GOME for summer 1997 Liu et al., 2006

Ziemke et al., 2006

Nassar and TES-team, 2007